skip to main content


Search for: All records

Creators/Authors contains: "He, Min"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. ABSTRACT

    We use the eROSITA Final Equatorial-Depth Survey (eFEDS) to measure the rest-frame 0.1–2.4 keV band X-ray luminosities of ∼600 000 DESI groups using two different algorithms in the overlap region of the two observations. These groups span a large redshift range of 0.0 ≤ zg ≤ 1.0 and group mass range of $10^{10.76}\, h^{-1}\, \mathrm{M}_{\odot } \le M_h \le 10^{15.0}\, h^{-1}\, \mathrm{M}_{\odot }$. (1) Using the blind detection pipeline of eFEDS, we find that 10932 X-ray emission peaks can be cross-matched with our groups, ∼38 per cent of which have a signal-to-noise ratio $\rm {S}/\rm {N} \ge 3$ in X-ray detection. Comparing to the numbers reported in previous studies, this matched sample size is a factor of ∼6 larger. (2) By stacking X-ray maps around groups with similar masses and redshifts, we measure the average X-ray luminosity of groups as a function of halo mass in five redshift bins. We find that in a wide halo mass range, the X-ray luminosity, LX, is roughly linearly proportional to Mh and quite independent to the redshift of the groups. (3) We use a Poisson distribution to model the X-ray luminosities obtained using two different algorithms and obtain the best-fit $L_{\rm X}=10^{28.46\pm 0.03}M_{\rm h}^{1.024\pm 0.002}$ and $L_{\rm X}=10^{26.73 \pm 0.04}M_{\rm h}^{1.140 \pm 0.003}$ scaling relations, respectively. The best-fit slopes are flatter than the results previously obtained but closer to a self-similar prediction.

     
    more » « less
  3. Kim, Y. ; Moon, D.H. (Ed.)
    We deploy a kinetic-rate equation to evaluate the transport of J /ψ, ψ(2 S ), B c and X (3872) in ultrarelativistic heavy-ion collisions and compare their production yields to experimental data from the Large Hadron Collider. The rate equation has two main transport parameters: the equilibrium limit and reaction rate for each state. The temperature-dependent equilibrium limits include charm- and bottom-quark fugacities based on their initial production. The reaction rates for charmonia, bottomonia and B c rely on charm- and bottomquark masses and binding energies from a thermodynamic T -matrix approach. For the X (3872) particle, internal structure information is encoded in reaction rates and initial conditions in the hadronic phase via two different scenarios: a loosely bound hadronic molecule vs. a compact tetraquark. 
    more » « less
  4. Abstract

    Based on a large group/cluster catalog recently constructed from the DESI Legacy Imaging Surveys DR9 using an extended halo-based group finder, we measure and model the group–galaxy weak-lensing signals for groups/clusters in a few redshift bins within redshift range 0.1 ≤z< 0.6. Here, the background shear signals are obtained based on the DECaLS survey shape catalog, derived with the Fourier_Quadmethod. We divide the lens samples into five equispaced redshift bins and seven mass bins, which allow us to probe the redshift and mass dependence of the lensing signals, and hence the resulting halo properties. In addition to these sample selections, we also check the signals around different group centers, e.g., the brightest central galaxy, the luminosity-weighted center, and the number-weighted center. We use a lensing model that includes off-centering to describe the lensing signals that we measure for all mass and redshift bins. The results demonstrate that our model predictions for the halo masses, biases, and concentrations are stable and self-consistent among different samples for different group centers. Taking advantage of the very large and complete sample of groups/clusters, as well as the reliable estimations of their halo masses, we provide measurements of the cumulative halo mass functions up to redshiftz= 0.6, with a mass precision at 0.03 ∼ 0.09 dex.

     
    more » « less
  5. Summary

    We consider and analyze a single‐server multiqueue polling model with inner arrivals. Customers arriving at the queue before polling instant could receive service in the current polling round; furthermore, each one could be retried (turns into an inner arrival) a given number of times with a specified probability. Such polling model can be used to study the performance of certain scheduling data transmission in the Internet of Things (IoT) and the relationship between data retransmission and delay. We obtain the closed‐form expression for the generating function of the amount of customers, which are presented at polling instants. Then, it is used to derive the precise closed‐form formula of mean queue length and mean waiting time in symmetric system.

     
    more » « less